Finite-time quantum-to-classical transition for a Schrödinger-cat state

File Size Format
74309_1.pdf 532Kb Adobe PDF View
Title Finite-time quantum-to-classical transition for a Schrödinger-cat state
Author Paavola, Janika; Hall, Michael; Paris, Matteo G. A.; Maniscalco, Sabrina
Journal Name Physical Review A
Year Published 2011
Place of publication United States
Publisher American Physical Society
Abstract The transition from quantum to classical, in the case of a quantum harmonic oscillator, is typically identified with the transition from a quantum superposition of macroscopically distinguishable states, such as the Schr¨odinger-cat state, into the corresponding statistical mixture. This transition is commonly characterized by the asymptotic loss of the interference term in the Wigner representation of the cat state. In this paper we show that the quantum-to-classical transition has different dynamical features depending on the measure for nonclassicality used. Measures based on an operatorial definition have well-defined physical meaning and allow a deeper understanding of the quantum-to-classical transition. Our analysis shows that, for most nonclassicality measures, the Schr¨odinger-cat state becomes classical after a finite time. Moreover, our results challenge the prevailing idea that more macroscopic states are more susceptible to decoherence in the sense that the transition from quantum to classical occurs faster. Since non classicality is a prerequisite for entanglement generation our results also bridge the gap between decoherence, which is lost only asymptotically, and entanglement, which may show a “sudden death.” In fact, whereas the loss of coherences still remains asymptotic, we emphasize that the transition from quantum to classical can indeed occur at a finite time.
Peer Reviewed Yes
Published Yes
Alternative URI http://dx.doi.org/10.1103/PhysRevA.84.012121
Copyright Statement Copyright 2011 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Volume 84
Issue Number 1
Page from 012121-1
Page to 012121-9
ISSN 1050-2947
Date Accessioned 2011-11-23
Date Available 2012-07-27T03:26:58Z
Language en_US
Research Centre Centre for Quantum Dynamics
Faculty Faculty of Science, Environment, Engineering and Technology
Subject Quantum Optics; Quantum Physics
URI http://hdl.handle.net/10072/42821
Publication Type Journal Articles (Refereed Article)
Publication Type Code c1x

Brief Record

Griffith University copyright notice