Cardiovascular dynamics during exercise are related to blood rheology

There are no files associated with this record.

Title Cardiovascular dynamics during exercise are related to blood rheology
Author Simmonds, Michael J.; Tripette, Julien; Sabapathy, Surendran; Marshall-Gradisnik, Sonya M.; Connes, Philippe
Journal Name Clinical Hemorheology and Microcirculation
Year Published 2011
Place of publication Netherlands
Publisher IOS Press
Abstract Background: The principal determinants of oxygen uptake ( \VdotO2) kinetics are controversial, with dynamic changes in central and peripheral factors mediating oxygen supply and utilisation suggested to be limiting. The aim of this study was to determine whether important parameters of blood rheology were related to the exercise-induced time-course changes in \VdotO2 and cardiac output ( \Qdotc), or steady-state arteriovenous oxygen difference (a-vO2D) during submaximal cycling. Methods and Results: Blood was collected from ten healthy, recreationally active males and females (age: 21.7 ± 1.3 yr; body mass index: 22.7 ± 2.0 kg·m−2), before each subject cycled at 105% of the first ventilatory threshold. Red blood cell aggregation was negatively correlated with steady-state \VdotO2 during exercise and the a-vO2D at rest (r = −0.73, p < 0.05), and positively correlated to \Qdotc at rest (r = 0.71, p < 0.05). Blood viscosity at various shear rates was negatively correlated with the time constant of \VdotO2 (all p < 0.01) on-transient kinetics. Red blood cell deformability at various shear stress was positively correlated to the time constant of \VdotO2 (all p < 0.05) on-transient kinetics. Conclusions: The findings of the present study suggest that the rheological properties of blood may modulate, at least in part, the rate of change in the uptake and/or utilisation of oxygen at the onset of exercise.
Peer Reviewed Yes
Published Yes
Alternative URI http://dx.doi.org/10.3233/CH-2011-1473
Volume 49
Issue Number 1-4
Page from 231
Page to 241
ISSN 1386-0291
Date Accessioned 2012-02-01; 2012-03-02T04:50:13Z
Date Available 2012-03-02T04:50:13Z
Research Centre Griffith Health Institute; Heart Foundation Research Centre
Faculty Griffith Health Faculty
Subject Exercise Physiology
URI http://hdl.handle.net/10072/43268
Publication Type Journal Articles (Refereed Article)
Publication Type Code c1

Show simple item record

Griffith University copyright notice