Correlations between the satellite-derived seasonal cycles of phytoplankton biomass and aerosol optical depth in the Southern Ocean: Eivdence for the influence of sea ice

There are no files associated with this record.

Title Correlations between the satellite-derived seasonal cycles of phytoplankton biomass and aerosol optical depth in the Southern Ocean: Eivdence for the influence of sea ice
Author Gabric, Albert Jerome; Shephard, Jill Mary; Knight, Jon; Jones, Graham; Trevena, Anne J.
Journal Name Global Biogeochemical Cycles
Year Published 2005
Place of publication Washington DC, USA
Publisher American Geophysical Union
Abstract The relationship between the production of dimethylsulfide (DMS) in the upper ocean and atmospheric sulfate aerosols has been confirmed through local shipboard measurements, and global modeling studies alike. In order to examine whether such a connection may be recoverable in the satellite record, we have analyzed the correlation between mean surface chlorophyll (CHL) and aerosol optical depth (AOD) in the Southern Ocean, where the marine atmosphere is relatively remote from anthropogenic and continental influences. We carried out the analysis in 5-degree zonal bands between 50°S and 70°S, for the period (1997–2004), and in smaller meridional sectors in the Eastern Antarctic, Ross and Weddell seas. Seasonality is moderate to strong in both CHL and AOD signatures throughout the study regions. Coherence in the CHL and AOD time series is strong in the band between 50°S and 60°S, however this synchrony is absent in the sea-ice zone (SIZ) south of 60°S. Marked interannual variability in CHL occurs south of 60°S, presumably related to variability in sea-ice production during the previous winter. We find a clear latitudinal difference in the cross correlation between CHL and AOD, with the AOD peak preceding the CHL bloom by up to 6 weeks in the SIZ. This suggests that substantial trace gas emissions (aerosol precursors) are being produced over the SIZ in spring (October–December) as sea ice melts. This hypothesis is supported by field data that record extremely high levels of sulfur species in sea ice, surface seawater, and the overlying atmosphere during ice melt.
Peer Reviewed Yes
Published Yes
Alternative URI http://dx.doi.org/10.1029/2005GB002546
Copyright Statement Copyright 2005 American Geophysical Union. Reproduced in accordance with the copyright policy of the publisher. This journal is available online: use hypertext links.
Volume 19
Issue Number 4
Edition GB4018
Page from 1
Page to 10
ISSN 0886-6236
Date Accessioned 2006-03-08
Date Available 2011-03-04T03:15:48Z
Language en_AU
Research Centre Australian Rivers Institute
Faculty Faculty of Environmental Sciences
Subject PRE2009-Earth Sciences
URI http://hdl.handle.net/10072/4350
Publication Type Journal Articles (Refereed Article)
Publication Type Code c1

Brief Record

Griffith University copyright notice