Stability and skill in driving

There are no files associated with this record.

Title Stability and skill in driving
Author Treffner, Paul Jaak; Barrett, Rod; Petersen, Andrew
Journal Name Human Movement Science
Editor P. J. Beek, P. van Wieringen
Year Published 2002
Place of publication Netherlands
Publisher Elsevier Science B. V.
Abstract Two experiments addressed the relation between postural stability, perceptual sensitivity, and stability of driving performance. A vehicle was fitted with differential GPS for measuring position and speed, position sensors for measuring brake and accelerator depression, force transducers for measuring door, console and footrest bracing forces, and an accelerometer for measuring the 3D accelerations of the vehicle. In Experiment 1, we investigated whether the initiation of deceleration and the control of braking might be due to sensitivity to the perceptual variable tau, which specifies time-to-contact (TTC), and in particular, whether its first derivative, tau-dot, is used to maintain a constant deceleration profile. Using both untrained experienced drivers (EDs) and trained driving instructors from the Holden Performance Driving Centre (HPDC), results confirmed that, regardless of skill level, tau-dot was maintained at a value close to 0.5 and, as predicted by Lee [Perception 5 (1976) 437], braking was initiated when TTC≈5 s. In Experiment 2, we wished to quantify the purported differences in driving behaviour between EDs and HPDC instructors during a variety of everyday manoeuvres. Results indicated that instructors utilised a different cornering trajectory, a different emergency braking strategy, and were able to perform a high-speed swerve and recovery task more effectively than the EDs. In general, the instructors applied greater bracing forces using the door and console compared with EDs. The instructors also applied greater footrest forces during emergency braking than did the EDs. The greater use of bracing by instructor drivers to resist g-forces represents a strategy of active stabilisation that enhances both postural stability, as well as overall stability and consistency of driving performance. Results are discussed with regard to the dynamics of perceptual-motor coordination, and how increased stability might improve sensitivity to relevant perceptual information. We conclude that driver-training programmes that focus on increasing driver stability (as a pre-requisite for increased control) show great promise as a means to improving one’s attention during driving, and hence have the potential to dramatically improve road safety in general.
Peer Reviewed Yes
Published Yes
Alternative URI
Volume 21
Page from 749
Page to 784
ISSN 0167-9457
Date Accessioned 2003-04-14
Date Available 2015-05-04T22:03:39Z
Language en_US
Research Centre Centre for Musculoskeletal Research; Menzies Health Institute Qld
Faculty Faculty of Engineering and Information Technology
Subject PRE2009-Motor Control
Publication Type Journal Articles (Refereed Article)
Publication Type Code c1

Show simple item record

Griffith University copyright notice