Atom lasers, coherent states, and coherence: I. Physically realizable ensembles of pure states

File Size Format
19958_1.pdf 460Kb Adobe PDF View
Title Atom lasers, coherent states, and coherence: I. Physically realizable ensembles of pure states
Author Wiseman, Howard Mark; Vaccaro, John A.
Journal Name Physical Review A: Atomic, Molecular and Optical Physics
Year Published 2002
Place of publication USA
Publisher American Physical Society
Abstract A laser, be it an optical laser or an atom laser, is an open quantum system that produces a coherent beam of bosons (photons or atoms, respectively). Far above threshold, the stationary state ρss of the laser mode is a mixture of coherent-field states with random phase, or, equivalently, a Poissonian mixture of number states. This paper answers the question: can descriptions such as these, of ρss as a stationary ensemble of pure states, be physically realized? Here physical realization is as defined previously by us [H. M. Wiseman and J. A. Vaccaro, Phys. Lett. A 250, 241 (1998)]: an ensemble of pure states for a particular system can be physically realized if, without changing the dynamics of the system, an experimenter can (in principle) know at any time that the system is in one of the pure-state members of the ensemble. Such knowledge can be obtained by monitoring the baths to which the system is coupled, provided that coupling is describable by a Markovian master equation. Using a family of master equations for the (atom) laser, we solve for the physically realizable (PR) ensembles. We find that for any finite self-energy χ of the bosons in the laser mode, the coherent-state ensemble is not PR; the closest one can come to it is an ensemble of squeezed states. This is particularly relevant for atom lasers, where the self-energy arising from elastic collisions is expected to be large. By contrast, the number-state ensemble is always PR. As the self-energy χ increases, the states in the PR ensemble closest to the coherent-state ensemble become increasingly squeezed. Nevertheless, there are values of χ for which states with well-defined coherent amplitudes are PR, even though the atom laser is not coherent (in the sense of having a Bose-degenerate output). We discuss the physical significance of this anomaly in terms of conditional coherence (and hence conditional Bose degeneracy).
Peer Reviewed Yes
Published Yes
Publisher URI http://pra.aps.org/
Alternative URI http://dx.doi.org/10.1103/PhysRevA.65.043605
Copyright Statement Copyright 2002 American Physical Society. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal link for access to the definitive, published version.
Volume 65
Page from 043605.1
Page to 043605.19
ISSN 1050-2947
Date Accessioned 2003-04-11
Date Available 2009-09-03T07:13:45Z
Language en_AU
Research Centre Centre for Quantum Dynamics
Faculty Faculty of Science
Subject PRE2009-Theoretical Physics
URI http://hdl.handle.net/10072/6959
Publication Type Journal Articles (Refereed Article)
Publication Type Code c1

Brief Record

Griffith University copyright notice